Light and redox switchable molecular components for molecular electronics.

نویسندگان

  • Wesley R Browne
  • Ben L Feringa
چکیده

The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen numerous unexpected challenges that have slowed progress and the initial promise of complex molecular-based computers has not yet been realised. Primarily this has been due to the realisation at an early stage that molecular-based nano-electronics brings with it the interface between the hard (semiconductor) and soft (molecular) worlds and the challenges which accompany working in such an environment. Issues such as addressability, cross-talk, molecular stability and perturbation of molecular properties (e.g., inhibition of photochemistry) have nevertheless driven development in molecular design and synthesis as well as our ability to interface molecular components with bulk metal contacts to a very high level of sophistication. Numerous groups have played key roles in progressing this field not least teams such as those led by Whitesides, Aviram, Ratner, Stoddart and Heath. In this short review we will however focus on the contributions from our own group and those of our collaborators, in employing diarylethene based molecular components.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light-powered molecular logic goes nonlinear.

A unique way to increase the dimensions of molecular logic schemes is reported in PNAS (1). What is molecular logic? Does it promise the ultimate flexible electronics—a liquid computer? Not exactly, although switchable molecules could be used in logic components, perhaps augmenting traditional electronics (2). The field of molecular logic, however, is much broader than that (3, 4). A good way t...

متن کامل

Quantitative Structure-Pproperty Relationship Modeling of the Redox Potential for Some Phenolic Antioxidants

In this work, quantitative structure-property relationship (QSPR) approaches were used to predict the redox potential of 42 phenolic antioxidants. The structures of all compounds optimized by the AM1 semi-empirical method and then a large number of molecular descriptors were calculated for each compound in the data set. Subsequently, stepwise multilinear regression was applied to select the mos...

متن کامل

Role of redox centre in charge transport investigated by novel self-assembled conjugated polymer molecular junctions

Molecular electronics describes a field that seeks to implement electronic components made of molecular building blocks. To date, few studies have used conjugated polymers in molecular junctions despite the fact that they potentially transport charge more efficiently than the extensively investigated small-molecular systems. Here we report a novel type of molecular tunnelling junction exploring...

متن کامل

Interfacing nanomaterials for bioelectronic applications

The integration of nanomaterials as a bridge between the biological and electronic worlds has revolutionised understanding of how to generate functional bioelectronic devices and has opened up new horizons for the future of bioelectronics. The use of nanomaterials as a versatile interface in the area of bioelectronics offers many practical solutions and has recently emerged as a highly promisin...

متن کامل

Electrochemical control of the single molecule conductance of a conjugated bis(pyrrolo)tetrathiafulvalene based molecular switch.

As the field of unimolecular electronics develops, there is growing interest in the development of functionalised molecular wires, such as switches, which will allow for more complex molecular-scale circuits. To this end, a three redox state single molecule switch, 1, based on bis(pyrrolo)tetrathiafulvalene (BPTTF) has been designed, synthesised and investigated using scanning tunnelling micros...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chimia

دوره 64 6  شماره 

صفحات  -

تاریخ انتشار 2010